Prime ideals in skew polynomial rings and quantized Weyl algebras
نویسندگان
چکیده
منابع مشابه
Associated Prime Ideals of Skew Polynomial Rings
In this paper, it has been proved that for a Noetherian ring R and an automorphism σ of R, an associated prime ideal of R[x, σ] or R[x, x−1, σ] is the extension of its contraction to R and this contraction is the intersection of the orbit under σ of some associated prime ideal of R. The same statement is true for minimal prime ideals also. It has also been proved that for a Noetherian Q-algebra...
متن کاملOn annihilator ideals in skew polynomial rings
This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...
متن کاملProperties of Polynomial Identity Quantized Weyl Algebras
In this work on Polynomial Identity (PI) quantized Weyl algebras we begin with a brief survey of Poisson geometry and quantum cluster algebras, before using these as tools to classify the possible centers of such algebras in two different ways. In doing so we explicitly calculate the formulas of the discriminants of these algebras in terms of a general class of central polynomial subalgebras. F...
متن کاملGeneralized Weyl algebras and diskew polynomial rings
The aim of the paper is to extend the class of generalized Weyl algebras to a larger class of rings (they are also called generalized Weyl algebras) that are determined by two ring endomorphisms rather than one as in the case of ‘old’ GWAs. A new class of rings, the diskew polynomial rings, is introduced that is closely related to GWAs (they are GWAs under a mild condition). The, so-called, amb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1992
ISSN: 0021-8693
DOI: 10.1016/s0021-8693(05)80036-5